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Abstract
The sequential recommendation system utilizes historical user inter-
actions to predict preferences. Effectively integrating diverse user
behavior patterns with rich multimodal information of items to en-
hance the accuracy of sequential recommendations is an emerging
and challenging research direction. This paper focuses on the prob-
lem of multi-modal multi-behavior sequential recommendation,
aiming to address the following challenges: (1) the lack of effective
characterization of modal preferences across different behaviors, as
user attention to different item modalities varies depending on the
behavior; (2) the difficulty of effectively mitigating implicit noise
in user behavior, such as unintended actions like accidental clicks;
(3) the inability to handle modality noise in multi-modal repre-
sentations, which further impacts the accurate modeling of user
preferences. To tackle these issues, we propose a novelMulti-Modal
Multi-Behavior Sequential Recommendation model (M3BSR). This
model first removes noise in multi-modal representations using
a Conditional Diffusion Modality Denoising Layer. Subsequently,
it utilizes deep behavioral information to guide the denoising of
shallow behavioral data, thereby alleviating the impact of noise in
implicit feedback through Conditional Diffusion Behavior Denois-
ing. Finally, by introducing a Multi-Expert Interest Extraction Layer,
M3BSR explicitly models the common and specific interests across
behaviors and modalities to enhance recommendation performance.
Experimental results indicate that M3BSR significantly outperforms
existing state-of-the-art methods on benchmark datasets.

CCS Concepts
• Information systems → Recommender systems.
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1 Introduction
With the explosive growth of internet information, recommenda-
tion systems have become a crucial bridge connecting users to
vast amounts of data. Sequential recommendation, which leverages
users’ historical interactions to predict preferences, has emerged as
a significant research direction. Traditional sequential recommen-
dation methods primarily rely on modeling single user behaviors
and item features. However, in real-world scenarios, user behaviors
are diverse[13, 29, 32], such as browsing, clicking, favoriting, and
purchasing, while items are rich in multi-modal information[23, 37],
including visual, textual, and auditory features. Effectively integrat-
ing users’ diverse behavioral patterns and items’ rich multi-modal
information to more accurately capture user interests has become
a highly promising research direction in the field of sequential
recommendation[3, 24].

In recent years, significant progress has been made in both
multi-behavior sequential recommendation and multi-modal se-
quential recommendation. Multi-behavior sequential recommen-
dation aims to leverage users’ interaction information across dif-
ferent behaviors to more comprehensively characterize user in-
terests [6, 10, 15, 35, 35]. Multi-modal sequential recommendation
focuses on integrating items’ multi-modal features to enhance the
quality of user interest representation and recommendation effec-
tiveness [16, 24, 40]. Despite these advancements, effectively com-
bining multi-behavior and multi-modal information for sequential
recommendation remains challenging. Specifically, existing meth-
ods still face the following critical issues:
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EMEET C960 4K Webcam for 
PC, 4K UHD Sony Sensor, 
PDAF Auto Focus, Dual AI 
Noise-Cancelling Mics, Auto 
Light Correction, 73° FOV, 
Plug&Play Webcam w/Privacy 
Cover, Privacy Cover, Ideal for 
Online Meetings&Live 
Streaming

GRACE KARIN Women's 
2025 Summer Floral Boho 
Dress Square Neck Strapped 
Swing A Line Sundress Beach 
Long Maxi Outfits. Made 
from 98% polyester+2% 
viscose. Flattering strappy 
maxi dress features a vivid 
floral print, elastic smocked 
design, open back. Adjustable 
Buttons Straps and lovely 
tiered ruffles.

I clicked on this 
webcam for its 

"4K clarity" and 
favored it for its 

sleek design.

I clicked this 
dress for its nice 

style and 
favored it for the 
"98% polyester 
+ 2% viscose" 

mentioned in the 
description.

Figure 1: The importance of images and text in influencing
user behavior varies depending on the type of behavior. On
the left, a real-world example is presented, demonstrating
that user actions such as "click" and "favor" exhibit certain
differences in relation to the modality of the item. On the
right, the evaluation results from multiple multimodal large
languagemodels (GPT-4o, Claude-3.5-Sonnet, and Gemini 1.5
Pro Exp-1206) are displayed, showing the statistical scores for
the attractiveness of the item’s image and text. Higher scores
indicate greater content attractiveness. From this analysis, it
can be observed that for the item "Dress," the image typically
attracts users to "click," while the final decision to "favor"
relies equally on textual information such as material and
composition.

(1) Lack of effective characterization ofmodal preferences
across different behaviors: Users exhibit varying prefer-
ences for different modalities depending on their behaviors.
As illustrated in Figure 1, in click behavior, visual elements
might be more attention-grabbing, whereas in save behav-
iors, textual details and product specifications may receive
greater focus. However, the lack of comprehensive research
on multi-behavior multi-modal sequential recommendation
has resulted in ineffective methods for characterizing users’
modal preferences across behaviors.

(2) Difficulty in effectively mitigating implicit noise in
user behaviors: Implicit user behavior data often contains
noise from accidental clicks or impulsive actions[18–20, 25,
31], which can distort the modeling of true user interests
and lead to irrelevant recommendations. When a user ac-
cidentally clicks on an unwanted item, it introduces mis-
leading noise that undermines the model’s understanding
of preferences. Additionally, noisy behaviors complicate the
characterization of modal preferences, as they may not accu-
rately reflect users’ genuine interests. In multi-behavior and
multi-modal contexts, effectively identifying and mitigating
the impact of such noise on modal preference modeling is a
critical challenge.

(3) Inability to handle noise in multi-modal representa-
tions: Noise in multi-modal representations negatively im-
pacts the modeling of user preferences. Multi-modal features,
such as image and text embeddings, often contain modality-
specific noise unrelated to user preferences, as observed in

prior work [37]. This noise can propagate through the rec-
ommendation pipeline, further complicating the effective
integration of multi-modal and multi-behavior information.

To address these challenges, we propose a novel Multi-Modal
Multi-Behavior SequentialRecommendation (M3BSR)model, which
aims to more precisely model users’ modal preferences across differ-
ent behaviors while effectivelymitigating noise in behavior data and
multi-modal representations. Inspired by diffusion models, M3BSR
first employs a conditional diffusion model to remove noise from
multi-modal representations (e.g., irrelevant details and noise from
pre-trained models) under the guidance of user interests, thereby
obtaining more accurate multi-modal preferences. Additionally,
inspired by the observation that deeper user behaviors (e.g., "fa-
vorite") represent more accurate behavioral preferences [6, 8, 35],
M3BSR uses deeper behavior information as a condition to guide
the diffusion model in denoising shallow behavior information (e.g.,
"click"), thereby improving the signal-to-noise ratio of user behavior
representations. Finally, the Multi-Expert Interest Extraction Layer
comprehensively models common and specific interests across be-
haviors and modalities through shared and dedicated expert net-
works, capturing the synergistic relationships between behaviors
and modalities to enhance recommendation performance.

Our contributions are as follows:

• We propose a novel Multi-Modal Multi-Behavior sequential
recommendation (M3BSR) model to improve the accuracy of
sequential recommendation. To the best of our knowledge,
this is the first work to explicitly model modal preferences
across different behaviors.

• We design a Conditional Diffusion Modal Denoising Layer, a
Conditional Diffusion Behavior Denoising Layer, and aMulti-
Expert Interest Extraction Layer, which effectively remove
noise from both modal and behavioral representations while
explicitly modeling the synergistic relationships between be-
haviors and modalities, thereby enhancing recommendation
performance.

• Extensive experiments on benchmark datasets demonstrate
that M3BSR significantly outperforms state-of-the-art meth-
ods.

2 Related work
2.1 Multi-modal Sequential Recommendation
In recommender systems, multi-modal information is increasingly
used to enhance accuracy and capture user preferences.MM-rec [27]
extracts image ROIs and employs co-attentional Transformers for
text-ROI modeling, alongside a crossmodal attention network for
user modeling. UniSRec [24] leverages item descriptions and con-
trastive pre-training for universal sequence representations. MISS-
Rec [24] introduces a Transformer-based encoder-decoder for multi-
modal synergy and adaptive item representations. MMSBR [40]
enhances session-based recommendations with pseudo-modality
contrastive learning and a hierarchical transformer. MMMLP [16]
proposes an MLP-based architecture with Feature and Fusion Mix-
ers, achieving state-of-the-art performance with linear complexity.
CMCLRec [33] addresses user cold-start via cross-modal mapping
and simulated behavior sequences. IISAN [5] adopts a Decoupled
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PEFT structure for intra- and inter-modal adaptation, matching full
fine-tuning performance with reduced GPU memory usage.

2.2 Multi-behavior Sequential Recommendation
The utilization of multi-behavior data has emerged as a crucial re-
search direction to enhance recommendation precision and capture
users’ complex preferences. NMTR [6] learns from multi-behavior
data by modeling cascading relationships among behaviors and
optimizing within a multi-task learning framework. DIPN [8] im-
proves real-time purchasing intent prediction by incorporating
touch-interactive behavior and using a hierarchical attention mech-
anism. Feedrec [28] unifies explicit and implicit feedbacks to infer
both positive and negative user interests, enhancing news feed
recommendation. SGDL [7] introduces a novel denoising para-
digm that utilizes memorized interactions during early training
to enhance the robustness of recommendation models by guiding
subsequent training with adaptive denoising signals. MB-STR [38]
models multi-behavior sequential dynamics with a multi-behavior
transformer layer and behavior-aware prediction module. KMCLR
[34] enhances multi-behavior recommendation through knowledge
graphs and contrastive learning tasks. EBM [9] addresses efficiency
and noise in multi-behavior sequential recommendation with hard
and soft denoising modules. MISSL [26] combines multi-behavior
and multi-interest modeling using a hypergraph transformer net-
work and self-supervised learning.

3 PRELIMINARY
3.1 Problem Statement
Let the user set be𝑈 = {𝑢1, 𝑢2, · · · }. Following the work of [2, 7], we
denote clicks as implicit feedback and favorites as explicit feedback.
We define the set of behaviors 𝐵 = {𝑐𝑙, 𝑓 𝑎}, where 𝑐𝑙 represents
clicking behavior and 𝑓 𝑎 represents favoring behavior. Let the item
set be 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑛}. Each item 𝑖 has threemodalities: item iden-
tifier 𝑖𝑑 , image 𝑖𝑚, and text 𝑡𝑒 . We denote the set of modalities as
𝑀 = {𝑖𝑑, 𝑖𝑚, 𝑡𝑒}. For each user 𝑢, there are two behavior sequences,
namely 𝑆𝑢,𝑐𝑙 = (𝑠𝑢,𝑐𝑙,1, 𝑠𝑢,𝑐𝑙,2, · · · ) and 𝑆𝑢,𝑓 𝑎 = (𝑠𝑢,𝑓 𝑎,1, 𝑠𝑢,𝑓 𝑎,2, · · · ),
where 𝑠𝑢,𝑐𝑙,1 represents the clicking behavior of user 𝑢 at time 1
and 𝑠𝑢,𝑓 𝑎,1 represents the favoring behavior of user 𝑢 at time 1.
And for each behavior sequence, since each item has three modal-
ities, there are three corresponding modality sequences. For ex-
ample, the item identifier sequence for the clicking behavior of
user 𝑢 can be denoted as 𝑆𝑖𝑑

𝑢,𝑐𝑙
= (𝑠𝑖𝑑

𝑢,𝑐𝑙,1, 𝑠
𝑖𝑑
𝑢,𝑐𝑙,2, · · · ), the image

sequence as 𝑆𝑖𝑚
𝑢,𝑐𝑙

= (𝑠𝑖𝑚
𝑢,𝑐𝑙,1, 𝑠

𝑖𝑚
𝑢,𝑐𝑙,2, · · · ), and the text sequence as

𝑆𝑡𝑒
𝑢,𝑐𝑙

= (𝑠𝑡𝑒
𝑢,𝑐𝑙,1, 𝑠

𝑡𝑒
𝑢,𝑐𝑙,2, · · · ). The same applies to the favoring behav-

ior sequences 𝑆𝑖𝑑
𝑢,𝑓 𝑎

, 𝑆𝑖𝑚
𝑢,𝑓 𝑎

, and 𝑆𝑡𝑒
𝑢,𝑓 𝑎

. The core task of this study is
to accurately predict the next item 𝑖 that user 𝑢 will interact with
based on the user’s multi-modal multi-behavior sequences 𝑆𝑢,𝑐𝑙 and
𝑆𝑢,𝑓 𝑎 .

3.2 Diffusion Model
The general conditional diffusion model [12] consists of a forward
diffusion process and a reverse denoising process. The forward
diffusion process is a Markov chain. At each time step 𝑡 , according
to the variance schedule 𝛽1, · · · , 𝛽𝑇 , Gaussian noise is gradually

added to the data 𝑥0 to obtain ℎ𝑡 , and the process can be expressed
as the following formula:

𝑞(ℎ𝑡 |ℎ𝑡−1) = N(ℎ𝑡 ; (1 − 𝛽𝑡 )ℎ𝑡−1, 𝛽𝑡 I) (1)

Where N denotes the normal distribution, 𝛽𝑡 represents the vari-
ance parameter at time step 𝑡 , and I is the identity matrix. This
equation describes the probability distribution of the current state
ℎ𝑡 given the previous state ℎ𝑡−1 at time step 𝑡 . This distribution is
a normal distribution with a mean of (1− 𝛽𝑡 )ℎ𝑡−1 and a covariance
of 𝛽𝑡 I. This means that ℎ𝑡 is obtained by adding a certain amount
of Gaussian noise to ℎ𝑡−1, with the amount of noise controlled by
𝛽𝑡 .

The reverse denoising process focuses on learning an inverse
transformation to successfully recover the original data 𝑥0 from
the noisy data ℎ𝑡 , and its definition is as follows:

𝑝 (ℎ𝑡−1 |ℎ𝑡 ) = N(ℎ𝑡−1; 𝜇𝑡−1 (ℎ𝑡 , ℎ𝑐 ), Σ𝑡−1 (ℎ𝑡 , ℎ𝑐 )) (2)

Where 𝑝 (ℎ𝑡−1 |ℎ𝑡 ) is the probability distribution of the previous
state ℎ𝑡−1 given the current state ℎ𝑡 . N denotes the normal distri-
bution. 𝜇𝑡−1 (ℎ𝑡 , ℎ𝑐 ) is the predicted mean function based on the
current state ℎ𝑡 and conditional information ℎ𝑐 . Σ𝑡−1 (ℎ𝑡 , ℎ𝑐 ) is the
predicted covariance function based on the current state ℎ𝑡 and
conditional information ℎ𝑐 .

4 Methodology
In this section, we propose theM3BSR (Multi-Modal Multi-Behavior
sequential recommendation) framework to address challenges in
characterization ofmodal preferences across different behaviors and
mitigating implicit noise in modalities and behaviors. M3BSR con-
sists of three core components: the Conditional Diffusion Modality
Denoising Layer, which enhances multi-modal feature representa-
tion by capturing synergistic, common, and specific characteristics;
the Conditional Diffusion Behavior Denoising Layer, which im-
proves the signal-to-noise ratio of user behavior representations by
leveraging deep-level behavioral information; and the Multi-Expert
Interest Extraction Layer, which models common and specific inter-
ests across behaviors and modalities to enhance recommendation
performance. The framework’s structure is illustrated in Fig. 2, pro-
viding a comprehensive solution for multi-modal multi-behavior
sequential recommendation tasks.

4.1 Multi-modal Multi-behavior Input Layer
Multiple different behavior sequences and multiple modalities in
each behavior sequence are taken as inputs. For the behavior se-
quence 𝑆𝑢 of user 𝑢, the three modalities of 𝑖𝑑 , image 𝑖𝑚, and text
𝑡𝑒 of each item corresponding to each behavior 𝑠𝑢,𝑡 need to be
processed separately. Given the challenges faced by existing multi-
behavior recommendations, the information of different modalities
has significantly different impacts on different user behaviors. It is
crucial to accurately extract and fuse this modal information. First,
for the 𝑖𝑑 modality sequence 𝑆𝑖𝑑𝑢 = [𝑆𝑖𝑑

𝑢,𝑐𝑙
, 𝑆𝑖𝑑

𝑢,𝑓 𝑎
] of user 𝑢, due to

their simplicity, we directly use a embedding layer for embedding:

ℎ𝑖𝑑 = 𝑀𝐿𝑃 (𝑆𝑖𝑑𝑢 ) (3)

For the image modality sequence 𝑆𝑖𝑚𝑢 = [𝑆𝑖𝑚
𝑢,𝑐𝑙

, 𝑆𝑖𝑚
𝑢,𝑓 𝑎

] of 𝑢, we
use the Contrastive Language-Image Pre-training (CLIP) [21] to
extract features. Let the convolution operation be 𝐶𝐿𝐼𝑃 . After the
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Embedding Layer

... ...

... ... ...

Modality Conditional Diffusion
Modal Denoising Layer

...

Favor Behavior Sequence

... ......

Predciton Layer

Embedding Layer

... ...

... ... ...

Modality Conditional Diffusion
Modal Denoising Layer

... ......

Behavior  Conditional Diffusion 
Modal Denoising Layer

...

Click Behavior Sequence

Multi-Expert Interest Extraction Layer & Interest Disentanglement

Forward Diffusion Reverse Diffusion 
... ... ... ...

Gaussian
noise

Noise 
Predicter

Noise 
Predicter

(b) Conditional Diffusion Modal Denoising Layer

(c) Multi-Expert Interest Extraction Layer

...

Cross Attention

E E EE E E E

Router

Share
Parameters

(d) Interest Disentanglement

Click Favor Push

(a) Overall Framework

Figure 2: (a) The overall framework of our proposed M3BSR framework, which illustrates the complete algorithmic workflow;
(b) shows our proposed CDMD Layer; (c) presents our proposed MEIE module; (d) demonstrates the feature decoupling process
for different features across various modalities and behaviors.

convolution operation on the image 𝑖𝑚𝑖 , the image feature vector
ℎ𝑖𝑚 is obtained, and the process can be expressed as:

ℎ𝑖𝑚 = 𝐶𝐿𝐼𝑃 (𝑆𝑖𝑚𝑢 ) (4)

For the text modality sequence 𝑆𝑡𝑒𝑢 = [𝑆𝑡𝑒
𝑢,𝑐𝑙

, 𝑆𝑡𝑒
𝑢,𝑓 𝑎

] of 𝑢, we also use
CLIP for embedding text information. After processing by the CLIP,
the text feature vector ℎ𝑡𝑒 is obtained:

ℎ𝑡𝑒 = 𝐶𝐿𝐼𝑃 (𝑆𝑡𝑒𝑢 ) (5)

4.2 Conditional Diffusion Model Denoising
Layer

In this section, to address the noise issues in modal and behavioral
features, we introduce the Conditional Diffusion Model Denoising
(CDMD) Layer for denoising.

4.2.1 Denoising for Different Modalities. As observed in previ-
ous works [1, 24, 40], image and text embeddings often contain
modality-specific noise that is independent of user preferences. This
noise can propagate further through the recommendation pipeline,
amplifying the challenges of effectively aligning multi-modal and
multi-behavior information. Currently, mainstream recommenda-
tion systems are ID-based, as ID features more directly reflect user
preferences compared to the complex features of images and texts.

Inspired by conditional diffusion model [12], we leverage ID fea-
tures as conditions to guide the denoising of text and image modal-
ities. The specific steps are as follows: Let the noisy image and text
feature vectors at step 𝑡 be ℎ̂𝑖𝑚𝑡 and ℎ̂𝑡𝑒𝑡 respectively. According to
the conditional diffusion model in Section 3.2, the denoising process
can be expressed as:

Forward Diffusion:

𝑞(ℎ𝑚𝑡+1 |ℎ
𝑚
𝑡 ) = N(ℎ̂𝑚𝑡+1; (1 − 𝛽𝑡 )ℎ𝑚𝑡 , 𝛽𝑡 I) (6)

Where𝑚 ∈ {𝑖𝑚, 𝑡𝑒}. ℎ̂𝑚𝑡 is the feature of modality𝑚 at time step
𝑡 . N denotes the normal distribution, 𝛽𝑡 represents the variance
parameter at time step 𝑡 , and I is the identity matrix. This means
that ℎ̂𝑚𝑡 is obtained by adding a certain amount of Gaussian noise
to ℎ̂𝑚

𝑡−1, with the amount of noise controlled by 𝛽𝑡 . By using the
reparameterization trick [12], the formula can be simplified to:

ℎ̃𝑚𝑡+1 =

√︃
𝛼𝑚𝑡 ℎ

𝑚
𝑡 +

√︃
1 − 𝛼𝑚𝑡 𝜖

𝑚
𝑡 (7)

Where 𝜖𝑚𝑡 represents the noise vector injected into feature ℎ̃𝑏,𝑚
𝑡+1

at time step 𝑡 . 𝛼𝑚𝑡 controls the degree of noise added to𝑚 at time
step 𝑡 .

Reverse Diffusion: According to [12], the Reverse Diffusion
Equation can be expressed as:

ℎ𝑚𝑡−1 =
1√︁
𝛼𝑚𝑡

(
ℎ̃𝑚𝑡 −

1 − 𝛼𝑚𝑡√
1 − 𝛼𝑡

𝜖𝑚𝑡

)
(8)
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where 𝜖𝑚𝑡 represents the noise vector removed from ℎ̃𝑚𝑡 at time
step 𝑡 , and 𝛼𝑡 =

∏𝑡
𝑖=1 𝛼𝑖 . Inspired by IP-Adapter [36], we employ

conditional features and cross-attention mechanism [17] to guide
the removal of noise from the feature ℎ̃𝑚𝑡 . The 𝜖𝑚𝑡 can be calculated
by following equation:

𝜖𝑚𝑡 = 𝐶𝐼 (ℎ𝑚𝑡 , ℎ𝑐 )

𝐶𝐼 (ℎ𝑚𝑡 , ℎ𝑐𝑡 ) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑚𝑡 , ℎ𝑐 , ℎ𝑐 )
(9)

Here, since the ID features can more directly reflect user pref-
erences and contain less noise compared to complex image and
text features, we have ℎ𝑐 = ℎ𝑖𝑑 . Note that, for the favor behav-
ior, we denote the features obtained through Reverse Diffusion as
ℎ𝑖𝑚
𝑓 𝑎
, ℎ𝑡𝑒

𝑓 𝑎
, 𝑎𝑛𝑑ℎ𝑖𝑑

𝑓 𝑎
for image, text, and ID modalities, respectively.

Optimization: The reconstruction loss is used to measure the
difference between the denoised and noisy image and text feature
vectors, that is:

L𝑚 =

𝑇∑︁
𝑡=1

�̂�∑︁
𝑚

(
∥ℎ̃𝑚𝑡 − ℎ𝑚𝑡 ∥2

2 + ∥ℎ̃𝑚𝑡 − ℎ𝑚𝑡 ∥2
2

)
(10)

where �̂� = 𝑖𝑚, 𝑡𝑒 ,ℎ̃𝑚𝑡 and ℎ̃𝑚𝑡 are the noisy image and text feature
vectors, and ℎ𝑚𝑡 and ℎ𝑚𝑡 are the denoised feature vectors. By mini-
mizing the L𝑚 , it can be ensured that the denoised modal features
more accurately reflect users’ true preferences.

4.2.2 Denoising for Different Behaviors. Since the noise levels and
impacts of different behaviors vary, for example, favor behaviors
usually better reflect users’ long-term interests and true preferences,
while click behavior may contain more noise and temporary factors.
click behavior may be caused by users’ casual browsing or misop-
erations and do not fully represent users’ real needs, while favor
behaviors are decisions made after certain thinking and comparison
and are more valuable for reference. Therefore, by denoising click
behavior with favor behaviors as conditions, users’ true interests
can be more accurately captured, and the accuracy and stability
of recommendations can be improved. Hence, in the conditional
diffusion behavior denoising layer, explicit feedback (such as favor)
are used as conditions to denoise implicit feedback behaviors (such
as click). The specific steps are as follows: Let the feature vector
of the implicit feedback behavior be 𝑥𝑏 , and the denoised behavior
feature vector be 𝑥

𝑏
. The conditional diffusion behavior denoising

process can be expressed as:
Forward Diffusion:

ℎ̃
𝑐𝑙,𝑚
𝑡+1 =

√︃
𝛼
𝑐𝑙,𝑚
𝑡 ℎ

𝑐𝑙,𝑚
𝑡 +

√︃
1 − 𝛼𝑐𝑙,𝑚𝑡 𝜖

𝑐𝑙,𝑚
𝑡 (11)

Where ℎ̃𝑐𝑙,𝑚𝑡 is the feature of behavior click for modality𝑚 at
time step 𝑡 . ℎ𝑐𝑙,𝑚𝑡 is the denoising feature by Eq. (8) for modality
𝑚 of behavior click. 𝛼𝑐𝑙,𝑚𝑡 controls the degree of noise added to
behavior click for𝑚 at time step 𝑡 .

Reverse Diffusion:

ℎ̂
𝑐𝑙,𝑚
𝑡−1 =

1√︃
𝛼
𝑐𝑙,𝑚
𝑡

©­­«ℎ̃
𝑐𝑙,𝑚
𝑡+1 −

1 − 𝛼𝑐𝑙,𝑚𝑡√︃
1 − 𝛼𝑐𝑙,𝑚𝑡

𝜖
𝑐𝑙,𝑚
𝑡

ª®®¬
𝜖
𝑐𝑙,𝑚
𝑡 = 𝐶𝐼 (ℎ𝑐𝑙,𝑚𝑡 , ℎ𝑐 )

𝐶𝐼 (ℎ𝑐𝑙,𝑚𝑡 , ℎ𝑐𝑡 ) = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ
𝑐𝑙,𝑚
𝑡 , ℎ𝑐 , ℎ𝑐 )

(12)

Compared to click behavior, which may be influenced by acci-
dental actions or other factors, deeper behaviors (such as favoring)
tend to exhibit a lower level of noise. Therefore, we can use the
features of favor behaviors to guide the denoising of click behavior,
we have ℎ𝑐 = ℎ𝑓 𝑎,𝑚 . Note that, for the click behavior, we denote
the features obtained through Reverse Diffusion as ℎ𝑖𝑚

𝑐𝑙
, ℎ𝑡𝑒

𝑐𝑙
, 𝑎𝑛𝑑ℎ𝑖𝑑

𝑐𝑙
for image, text, and ID modalities, respectively.

Optimization: Similarly, the reconstruction loss is used to mea-
sure the difference between the denoised and noisy behavior feature
vectors, that is:

L𝑏 =

�̂�∑︁
𝑚

𝑇∑︁
𝑡=1

∥ℎ̂𝑐𝑙,𝑚𝑡 − ℎ̃𝑐𝑙,𝑚𝑡 ∥2
2 (13)

where ℎ̃𝑐𝑙,𝑚𝑡 is the noisy behavior feature vector, and ℎ̂𝑐𝑙,𝑚𝑡 is the
denoised feature vector for modality𝑚 of behavior click. By mini-
mizing this loss, the model can remove the noise in the click behav-
ior features, more accurately model users’ real behavior, and thus
improve the accuracy of recommendations.

4.3 Multi-Expert Interest Extraction Layer
In this section, we introduce the Multi-Expert Interest Extraction
(MEIE) Layer, a novel approach designed to capture and aggregate
diverse user interests from multi-modal and multi-behavior data.
This layer effectively handles the complexity of user interactions by
leveraging cross-attention mechanisms, Transformer architectures,
and gating networks.

4.3.1 Common Feature Extraction. Users exhibit diverse behaviors
and interaction modalities, yet often have a stable underlying pref-
erence. For example, a fan of science fiction movies keeps this pref-
erence whether browsing text-based movie info or watching video
trailers. To capture user preferences, we must extract common fea-
tures across different behaviors and modalities. Since these features
are initially independent, we use a cross - attention mechanism. It
dynamically calculates feature correlations, captures semantic rela-
tionships, and effectively aligns and fuses heterogeneous feature
representations.

Specifically, themulti-modal features of click and favor behaviors
are concatenated firstly:

ℎ𝑐𝑙 = [ℎ𝑖𝑚
𝑐𝑙
, ℎ𝑡𝑒

𝑐𝑙
, ℎ𝑖𝑑

𝑐𝑙
] (14)

ℎ𝑓 𝑎 = [ℎ𝑖𝑚
𝑓 𝑎
, ℎ𝑡𝑒

𝑓 𝑎
, ℎ𝑖𝑑

𝑓 𝑎
] (15)

whereℎ𝑖𝑚/𝑡𝑒/𝑖𝑑
𝑐𝑙/𝑓 𝑎 denotes the features obtained through the reverse diffusion

process.
Then, cross-attention is used to interact and align between click

and favor behaviors:

ℎ̂𝑠ℎ𝑎𝑟𝑒 = CrossAttention(ℎ𝑐𝑙 , ℎ𝑓 𝑎) (16)

Finally, considering that the Transformer can effectively capture
long-range dependencies and complex interactions, we utilize the
Transformer as the expert network to capture deeper common
features:

ℎ𝑐𝑜𝑚𝑚𝑜𝑛 = Transformer(ℎ̂𝑠ℎ𝑎𝑟𝑒 ) (17)
where ℎ𝑐𝑜𝑚 represents the common features across different be-
haviors and modalities.
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4.3.2 Unique Feature Extraction for Click and Favor Behavior. In
practical applications, apart from common features, users may also
be attracted by the characteristics of modalities on products. For
instance, users might focus more on the visual attractiveness of
images or the accuracy of text descriptions. Moreover, user click
behavior and favor behavior may exhibit distinct preferences across
different modalities. Hence, extracting the unique modal features
under different behaviors is essential for a better understanding of
users’ specific interests for different modalities. Given the Trans-
former’s capability to dynamically attend to diverse sequence posi-
tions and capture intricate intra-modal dependencies, it effectively
learns behavior-specific information representations. Thus, we em-
ploy the Transformer as the expert network to extract distinct
modal features (image, text, and ID) for click and favor behaviors.

ℎ𝑚
𝑐𝑙

= Transformer(ℎ𝑚
𝑐𝑙
) (18)

ℎ𝑚
𝑓 𝑎

= Transformer(ℎ𝑚
𝑓 𝑎
) (19)

Here, ℎ𝑚
𝑐𝑙
, and ℎ𝑚

𝑓 𝑎
represent the modality𝑚 features under click

and favor behavior, respectively.𝑚 ∈ {𝑖𝑑, 𝑖𝑚, 𝑡𝑒}.

4.3.3 Interest Disentanglement: To ensure that the feature represen-
tations of different modalities and behaviors can be distinguished
and capture their unique characteristics, we design a contrastive
loss function for feature disentanglement. This encourages the fea-
ture representations ℎ𝑖𝑑

𝑐𝑙
, ℎ𝑖𝑚

𝑐𝑙
, ℎ𝑡𝑒

𝑐𝑙
, ℎ𝑖𝑑

𝑓 𝑎
, ℎ𝑖𝑚

𝑓 𝑎
, ℎ𝑡𝑒

𝑓 𝑎
, and ℎ𝑐𝑜𝑚𝑚𝑜𝑛 to

be separated in the feature space. The purpose of this design is to
avoid confusion between features and ensure that each modality
and behavior’s feature representation can independently capture
its unique semantic information. Specifically, We use the following
contrastive loss function to encourage the separation of different
feature representations:

Lcontrast = −
∑︁
𝑖≠𝑗

log
exp(sim(ℎ𝑖 , ℎ 𝑗 )/𝜏)∑
𝑘≠𝑖 exp(sim(ℎ𝑖 , ℎ𝑘 )/𝜏)

(20)

where ℎ𝑖 and ℎ 𝑗 represent different feature representations (e.g.,
ℎ𝑖𝑑
𝑐𝑙
, ℎ𝑖𝑚

𝑐𝑙
, ℎ𝑡𝑒

𝑐𝑙
, ℎ𝑖𝑑

𝑓 𝑎
, ℎ𝑖𝑚

𝑓 𝑎
, ℎ𝑡𝑒

𝑓 𝑎
, and ℎ𝑐𝑜𝑚𝑚𝑜𝑛). sim(ℎ𝑖 , ℎ 𝑗 ) is a simi-

larity measure between features ℎ𝑖 and ℎ 𝑗 , typically using cosine
similarity. 𝜏 is a hyperparameter, known as the temperature pa-
rameter, which controls the sensitivity to similarity in contrastive
learning.

4.3.4 Interest Routing Fusion. Users may exhibit varying prefer-
ences across different modalities. Additionally, the feature data
often contains noise unrelated to user interests, which can interfere
with the accurate extraction and modeling of true user preferences.
Therefore, we employ a routing network to dynamically control the
weights of different features during fusion. This network prioritizes
features that are more aligned with user preferences and less af-
fected by noise, ensuring a more robust and precise representation
of user interests. The routing network can be represented as:

ℎ𝑐𝑙 = [ℎ𝑖𝑚
𝑐𝑙
, ℎ𝑡𝑒

𝑐𝑙
, ℎ𝑖𝑑

𝑐𝑙
]

ℎ𝑓 𝑎 = [ℎ𝑖𝑚
𝑓 𝑎
, ℎ𝑡𝑒

𝑓 𝑎
, ℎ𝑖𝑑

𝑓 𝑎
]

𝑔 = 𝜎 (𝑊𝑔 ·[ℎ𝑐𝑜𝑚𝑚𝑜𝑛 ;ℎ𝑐𝑙 ;ℎ𝑓 𝑎] + 𝑏𝑔)

(21)

𝑦 = 𝑔 · ℎ𝑐𝑜𝑚𝑚𝑜𝑛 + (1 − 𝑔) · [ℎ𝑐𝑙 ;ℎ𝑓 𝑎] (22)

Table 1: Statistics of Rec-Tmal and Kuaishou datasets.

Dataset Users Items Interactions Avg. Clicks Avg. Favors
Rec-Tmal 72051 93466 328387 4.16 1.73
Kuaishou 22793 618529 5852725 255.02 40.96

here, 𝜎 is the sigmoid function,𝑊𝑔 and 𝑏𝑔 are learnable parameters,
and 𝑦 is the final fused feature.

4.4 Prediction & Optimization
4.4.1 cross-entropy loss: After completing the multi-modal multi-
behavior interest extraction, the user preference representation 𝑦
is input into the prediction layer. This layer uses a fully-connected
neural network to map the preference representation to the proba-
bility distribution of items:

𝑝 (𝑖 |𝑦) = softmax(𝑊𝑦 + 𝑏) (23)
To train the model, we use the cross-entropy loss function to

measure the difference between the predicted results and the actual
results. The specific formula is as follows:

Lmain = −
∑︁
𝑢∈𝑈

log𝑝 (𝑖𝑢 |𝑦𝑢 ) (24)

where 𝑖𝑢 is the actual item selected by user 𝑢, and 𝑦𝑢 is the user
preference representation extracted by the model for user 𝑢.

4.4.2 Total Loss Function: The total loss function is:

L = L𝑚𝑎𝑖𝑛 + 𝜆𝑐Lcontrast + 𝜆𝑚L𝑚 + 𝜆𝑏L𝑏 (25)

where 𝜆𝑐 , 𝜆𝑚 , and 𝜆𝑏 are hyperparameters that balance the contri-
butions of the contrastive loss, modal denoising loss, and behavior
denoising loss, respectively. Minimizing the total loss function en-
sures that the model comprehensively captures user preferences
while reducing noise and enhancing feature representations. This
holistic approach leads to more robust and accurate recommenda-
tions.

5 Experiment
In this section, we evaluate the M3BSR framework on two public
datasets, Rec-Tmal and Kuaishou, to address the following research
questions:

• Effectiveness (RQ1). Does the M3BSR model outperform
various state-of-the-art (SOTA) baselines?

• Thoroughness (RQ2).Howdo the specific designs inM3BSR
impact the model’s performance?

• Robustness (RQ3). How do changes in the module’s pa-
rameters affect the model’s effectiveness?

• Cold Start (RQ4). How is the performance of our method
under the cold start scenario?

• Visualization (RQ5). Can our method effectively remove
noise?

5.1 Experimental Settings
5.1.1 Dataset. Due to the scarcity of research specifically focused
on multi - modal multi - behavior recommendation systems, we
introduced two new datasets for our experiments: "Rec-Tmal" and
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Table 2: Performance Comparison on Rec-Tmal and Kuaishou datasets.

Method Rec-Tmal Kuaishou
HR@10 NDCG@10 HR@20 NDCG@20 HR@10 NDCG@10 HR@20 NDCG@20

Traditional Sequential Recommendation Methods
GRU4Rec (2015) 0.1498 0.0431 0.2015 0.0492 0.0853 0.0021 0.1360 0.0103
SASRec (2018) 0.1662 0.0578 0.2145 0.0635 0.1001 0.0083 0.1490 0.0141

BERT4Rec (2019) 0.2123 0.0964 0.2629 0.1078 0.1435 0.0494 0.1958 0.0549
STOSA (2022) 0.2568 0.1370 0.3080 0.1420 0.1930 0.0908 0.2420 0.1135
SSDRec (2024) 0.2827 0.1637 0.3315 0.1680 0.2176 0.1151 0.2671 0.1198

Multi-modal Sequential Recommendation Methods
MISSRec (2023) 0.2786 0.1601 0.3322 0.1623 0.2179 0.1120 0.2654 0.1186
MMSBR (2023) 0.2897 0.1660 0.3336 0.1702 0.2209 0.1188 0.2711 0.1253
MMMLP (2023) 0.2928 0.1753 0.3421 0.1789 0.2284 0.1285 0.2769 0.1332
M3SRec (2023) 0.2997 0.1803 0.3486 0.1851 0.2315 0.1293 0.2859 0.1354
CMCLRec (2024) 0.3075 0.1886 0.3602 0.1937 0.2394 0.1375 0.2918 0.1450

Multi-behavior Sequential Recommendation Methods
NMTR (2019) 0.2738 0.1524 0.3225 0.1563 0.2096 0.1061 0.2583 0.1088
DIPN (2019) 0.2786 0.1602 0.3307 0.1654 0.2153 0.1111 0.2623 0.1156
SGDL (2022) 0.2861 0.1670 0.3359 0.1708 0.2212 0.1181 0.2672 0.1209

MB-STR (2022) 0.2931 0.1741 0.3447 0.1795 0.2290 0.1282 0.2794 0.1344
KMCLR (2023) 0.3025 0.1800 0.3518 0.1857 0.2372 0.1334 0.2806 0.1382
EBM (2024) 0.3083 0.1877 0.3601 0.1953 0.2420 0.1395 0.2882 0.1423

M3BSR (Ours) 0.3207 0.2028 0.3815 0.2130 0.2603 0.1630 0.3101 0.1612

"Kuaishou". The Rec-Tmal dataset1 is sourced from Tmall2, and the
Kuaishou dataset3 comes from the Kuaishou platform. These two
datasets offer diverse multi-modal and multi-behavior data, which
are essential for comprehensively evaluating the performance of
our proposed M3BSR model in such a novel research area. For the
two datasets, we utilized product images for visual information
representation and product titles for textual information. For Rec-
Tmal, the ID information included item ID, brand ID, user ID, and
seller ID. Each user in this dataset has two types of behaviors: click
and favor. For Kuaishou, the ID modality includes user ID and video
ID. The detailed parameters are shown in Table 1

For all datasets, we selected user behavior sequences with a
minimum length of 5. Additionally, we retained the 50 most re-
cent historical records for each user. For the training and test data,
we adopt the same setting as described in [30, 41]. Table 1 dis-
plays the relevant statistical information for each dataset. Follow-
ing [9, 35, 38], we define the target behavior as "favor" and use
"click" as the auxiliary behavior, enabling the model to capture
the relationship between different user behaviors and their impact
on recommendations. To ensure a realistic evaluation scenario, we
treat the last favor behavior in each user sequence as the test sample
and the preceding ones as validation samples, allowing the model
to predict future user preferences based on historical interactions.
Additionally, to enhance the robustness of our evaluation, we pair
each positive sample with 99 randomly selected negative instances,
as suggested in [9, 35, 38].

1https://tianchi.aliyun.com/dataset/140281
2https://www.tmall.com/
3https://www.kuaishou.com/activity/uimc/datadesc

5.1.2 Evaluation Metrics. In our evaluation, we employ Hit Rate
at 𝐾 (HR@𝐾) and Normalized Discounted Cumulative Gain at 𝐾
(NDCG@𝐾 ) to assess prediction quality, widely accepted in sequen-
tial recommendation. HR@𝐾 measures whether the target item
appears in the top-𝐾 recommendations, while NDCG@𝐾 evalu-
ates the item’s ranking position, prioritizing higher ranks. We use
𝐾 = 10 and 20 to comprehensively test the model’s performance
across varying recommendation lengths.

5.1.3 Implementation Details. The proposed model is implemented
using the PyTorch framework4. To ensure a fair comparison, we
utilize our pipeline framework to reproduce all of the baselines, and
each baseline model is experimented with multiple times to obtain
optimal results. The size of IDs modality is set to 16, and image
and text modalities embeddings are set to 512 for the complexity
of image and text features compared to IDs. We use a fixed mini-
batch size of 1024. When searching for optimal values, we explore
learning rates in the set {10−5, 10−4, 10−3}, and hidden sizes in the
set {64, 128, 256, 512}. The time step𝑇 for the diffusion models is set
to 15. The level of the diffusion noise, denoted as 𝛼 , are initialized
in the range of [0.001, 0.1] to ensure effective noise scheduling
during training. Additionally, we search for the weights in Eq. (25)
within the range of 0.01 to 0.15. To prevent overfitting and optimize
performance, we employ an early stopping strategy. Specifically, if
the NDCG@10 metric does not improve for 10 consecutive epochs,
the training process will be halted.

4https://pytorch.org
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5.1.4 ComparisonMethods. We compare our frameworkwith SOTA
sequential recommendation methods across three categories. Tra-
ditional Sequential Recommendation Methods: GRU4Rec [11], SAS-
Rec [14], BERT4Rec [22], STOSA [4], SSDRec [39]; Multi-modal
Sequential Recommendation Methods: MISSRec [24], MMSBR [40],
MMMLP [16], M3SRec [1], CMCLRec [33]; Multi-behavior Sequen-
tial Recommendation Methods: NMTR [6], DIPN [8], SGDL [7],
MB-STR [38], KMCLR [34], EBM [9].

5.2 Performance Comparison (RQ1)
To validate the effectiveness of our proposed model, we performed
experiments on two different datasets. The results, presented in Ta-
ble 2, compare the performance of M3BSR with that of the baseline
models across different categories. Based on these results, we made
the following observations:

• M3BSR consistently achieves the best performance in
terms of HR@10, HR@20, NDCG@10, and NDCG@20
across both datasets. This demonstrates the superior effec-
tiveness of our proposed framework in handlingmulti-modal
multi-behavior sequential recommendation tasks. Besides,
the consistent gains across different datasets further under-
score the robustness and generalizability of M3BSR.

• Compared to traditional sequential recommendation
methods (GRU4Rec, SASRec, BERT4Rec, STOSA, SS-
DRec), M3BSR shows significant improvements. This is
attributed to M3BSR’s ability to leverage multi-modal infor-
mation and model inter-behavior dependencies, which are
not considered by these simpler sequential models.

• M3BSR also outperforms state-of-the-art multi-modal
sequential recommendationmethods (MISSRec,MMSBR,
MMMLP, M3SRec, CMCLRec). The improvements high-
light the effectiveness of M3BSR’s conditional diffusion de-
noising mechanisms in removing noise from both modal and
behavioral representations, leading to more accurate user
preference modeling. For example, while methods like MISS-
Rec focus on multi-modal synergy, they may not explicitly
address noise in the same way as M3BSR.

• Furthermore,M3BSR surpassesmulti-behavior sequen-
tial recommendation methods (NMTR, DIPN, SGDL,
MB-STR, KMCLR, EBM). This indicates the advantage
of M3BSR in jointly modeling multi-modalities and multi-
behaviors. While methods like NMTR focus on cascading
behavior relationships, they lack the explicit handling of
multi-modal information and noise that M3BSR provides.

5.3 Ablation Study (RQ2)
In this section, we conduct an ablation study to evaluate the impact
of different components of the M3BSR framework on the perfor-
mance of recommender systems.

• w/o CDMD-M: We remove the Conditional Diffusion Model
Denoising (CDMD) module for modalities, which is respon-
sible for denoising multi-modal feature representations.

• w/o CDMD-B: We remove the CDMDmodule for behaviors,
which denoises behavior feature representations.
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Figure 3: Performance for Ablation Study

• w/o MEIE: We remove the Multi-Expert Interest Extraction
(MEIE) layer that extracts and decouples user interests from
multi-modal and multi-behavior data.

• w/o Shared Expert: We remove the shared expert network,
which plays a role in modeling common interests across
modalities and behaviors.

• w/o Disent: We remove the Interest Disentanglement mod-
ule from the proposed model.

The ablation study in Fig. 3 evaluates the impact of key modules
on recommendation performance. (1) Removing the CDMD for
module modalities reduces HR@10 and NDCG@10, demonstrat-
ing the importance of denoising multi-modal features for accurate
user preference modeling. (2) Similarly, eliminating the CDMD
module for behaviors degrades performance, emphasizing the need
to mitigate noise in behavior sequences. (3) The most significant
performance drop occurs when removing the MEIE Layer, high-
lighting its critical role in modeling common and specific interests
across modalities and behaviors. (4) Ablating the Shared Expert also
reduces performance, as it disrupts the modeling of synergistic re-
lationships between data sources. (5) Finally, removing the Interest
Disentanglement module diminishes performance, confirming its
role in separating feature representations and reducing confusion
across modalities and behaviors.

5.4 In-depth Analysis (RQ3)
5.4.1 Effect of Behavior Denoising Diffusion. Figs.4a and4d show
HR@10 performance for varying behavior denoising steps and loss
weights on the Rec-Tmal and Kuaishou datasets. On Rec-Tmal, the
peak HR@10 (0.3207) occurred at 10 steps / 0.02 weight, balancing
denoising and specificity; excessive steps/weight (e.g., 25 / 0.15)
caused over-regularization (HR@10 0.3155). Similarly, Kuaishou
achieved its best HR@10 (0.2603) at 10 steps / 0.02 weight, ensur-
ing effective denoising without over-regularization. Insufficient
denoising (e.g., 5 steps / 0.01) reduced performance (HR@10 0.2583).
Consistently, the optimal range across both datasets is around 10
diffusion steps with a 0.02 loss weight, achieving the best trade-off.

5.4.2 Effect of Modality Denoising Diffusion. Figs.4a and4d show
HR@10 performance for varying behavior denoising steps and loss
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Figure 4: Heatmaps for different weights and diffusion steps

weights on the Rec-Tmal and Kuaishou datasets. On Rec-Tmal, the
peak HR@10 (0.3207) occurred at 10 steps / 0.02 weight, balancing
denoising and specificity; excessive steps/weight (e.g., 25 / 0.15)
caused over-regularization (HR@10 0.3155). Similarly, Kuaishou
achieved its best HR@10 (0.2603) at 10 steps / 0.02 weight, ensur-
ing effective denoising without over-regularization. Insufficient
denoising (e.g., 5 steps / 0.01) reduced performance (HR@10 0.2583).
Consistently, the optimal range across both datasets is around 10
diffusion steps with a 0.02 loss weight, achieving the best trade-off.

5.4.3 Effect of Contrastive Learning. Figs.4c and4f show the inter-
play between temperature and contrastive loss weight. On Rec-
Tmal, peak HR@10 (0.3207) occurred at 0.3 temperature / 0.05
weight, balancing sample separation and alignment. Lower settings
(e.g., 0.01 temp/0.01 weight) caused incorrect pairings (HR@10
0.3168), while higher settings (e.g., 0.5 temp/0.15 weight) hindered
separation (HR@10 0.3169). Similarly, Kuaishou’s best HR@10
(0.2603) was at 0.3 temp / 0.05 weight, ensuring proper separation.
Lower settings (0.01/0.01) dropped HR@10 to 0.2583, and higher
ones (0.5/0.15) to 0.2580. Consistently, optimal performance across
both datasets requires a 0.3 temperature and 0.05 loss weight.

5.5 Cold Start Experiment (RQ4)
In cold-start evaluations on Kuaishou users with sparse history
(≤10 interactions), M3BSR demonstrated significantly better perfor-
mance (HR@10, NDCG@10) than strong baselines. This advantage
arises from its ability to effectively infer preferences from multi-
modal data (images/text via CDMD), identify broader modality-
based interests independent of deep interaction history (usingMEIE
& Interest Disentanglement), and reduce noise impact through fea-
ture denoising.

5.6 TSNE Visualization (RQ5)
To visualize the effectiveness of the CDMD module, we performed
t-distributed stochastic neighbor embedding (t-SNE) on the item
embeddings learned from the Kuaishou dataset. As shown in Fig. 5,

Table 3: Performance on Cold-Start Users (Rec-Tmal)

Method HR@10 NDCG@10
STOSA 0.2186 0.1459
MMMLP 0.2413 0.1672
EBM 0.2560 0.1819

M3BSR (Ours) 0.2897 0.2146

Figure 5: Visualization of CMDM Effectiveness

Table 4: Time Efficiency Comparison on Kuaishou Dataset

Method Training Time Inference Time
per Epoch (s) per Prediction (s)

STOSA 25.3 0.07
MMMLP 28.7 0.09
EBM 32.5 0.13

M3BSR (Ours) 35.2 0.16

the embeddings processed by CDMD exhibit compact clusters, in-
dicating that CDMD effectively reduces noise. In contrast, when
CDMD is replaced with a Multilayer Perceptron (MLP), the embed-
dings only undergo translational shifts without significant changes
in their overall distribution. The resulting clusters remain dispersed
and noisy, failing to achieve the denoising effect observed with
CDMD.

5.7 Time Efficiency Experiment
M3BSR’s time efficiency was evaluated on Kuaishou. We fix the
batch-size as 128. Table 4 shows the average training time per epoch
and the average inference time per prediction for eachmethod.While
its added complexity increases training time, this is manageable
given significant performance gains. Its inference time is compara-
ble to complex baselines, making it practical for online recommen-
dation due to its parallelizable modular design.

6 Conclusion
This paper proposes M3BSR to address multi-modal recommen-
dation challenges. Using specialized modules (CDMD for Modali-
ties/Behaviors, MEIE & Feature Decoupling) and contrastive loss, it
denoises inputs and models common/specific interests. These com-
ponents work together to denoise multi-modal features, mitigate
noise in user behavior sequences, and explicitly model common
and specific interests across modalities and behaviors. Experiments
show M3BSR outperforms baselines, improving preference model-
ing and recommendation accuracy.
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